

## The flagship GNSS simulator that grows with your needs

### For DESIGN, VALIDATION and PRODUCTION

The history of Constellator™ started more than 20 years ago with the first simulator for Galileo. Its singularity lies in the **Real-time tight coupling of SDR (Software Defined Radio) and state-of-the-art RF Analog front-end**.

#### Powerful & High-Fidelity

- ▶ Realtime, Multi-constellation and Multi-frequency GPS, Galileo, GLONASS, QZSS, NavIC (IRNSS), BeiDou, SBAS, Encrypted signals.
- ▶ Powerful with 1 200+ L1C/A equivalent signals  
Simulate fully representative, high-density scenarios with Constellator's full potential.
- ▶ From simple trajectories to complex extreme dynamics  
Create trajectories in seconds, on earth, in the air or even in space.
- ▶ Representing real-life imperfections  
Error sources simulation: orbits, clocks, and ionosphere.
- ▶ Hardware-in-the-loop with zero effective latency  
Even with 6 DoF, up to 10 000 Hz input rate.

#### Easy to setup and use

- ▶ Quick integration & Extended Remote Control  
User-friendly GUI or remote control via API.
- ▶ Smooth hardware setup, ready for multi-antenna or multi-receiver  
Interfaces: 10 MHz Clock reference (IN & OUT), triggers, PPS IN & OUT.
- ▶ Extensive documentation, scenario library available & local support  
User guides, ICD, Python script examples & .xls tools for data structure.

Today, RTGS4 represents Syntony's 4th generation of simulators for GNSS and LEO PNT. It has been designed to meet the highest requirements in terms of fidelity, performance, flexibility and ease of use.

#### Extremely configurable for advanced simulations

- ▶ Rich multipath and terrain obscuration, with one click presets  
Leverage our library of customizable models (urban, suburban, highway...).
- ▶ All standard ionospheric & tropospheric models, Advanced 3D space dedicated models UNB, Klobuchar, Nequick, Customizable grid.
- ▶ On the fly scenario modifications & extensive simulation options  
Easily test the effect of perturbations to signals in real-time.
- ▶ Leverage extensive testing reports in realtime as a source of truth data  
Leverage 25+ environment variables and 20+ variables per satellite in view.
- ▶ Ready for jamming and spoofing tests  
Simulate up to 20 sources of jamming or spoofing, with configurable waveforms and signals.

#### Built to evolve with your testing requirements

- ▶ Scalable SDR architecture allowing continuous enhancements  
New signals and features remotely updatable by software licence.
- ▶ Designing a new LEO PNT signal, or a cis-lunar PNT constellation?  
As demonstrated at ION GNSS+ '22 with LEO PNT, Constellator is adaptable.

#### SPACE & DEFENSE



#### AVIATION



#### TELECOM & 5G



#### AUTOMOTIVE



### A Comprehensive GNSS Simulation Solution

The Constellator family covers the full range of GNSS simulators tailored to address all use-cases. Available in three dedicated series, it can handle:

- ▶ **Constellator RF Series:** Conducted RF testing of single or multi-antenna receivers, including synchronized multiple receiver tests, from early R&D stages to Final Assembly Lines.
- ▶ **Constellator CRPA Series:** Specialized testing of CRPA receivers, with extreme phase synchronization and stability between RF outputs.
- ▶ **Constellator Anechoic Series:** Comprehensive testing in anechoic chambers for all types of GNSS devices.



### SIMULATION

#### Constellations & Signals

|                  |                                               |
|------------------|-----------------------------------------------|
| GPS              | L1C/A, L1C, L2C, L5, L1P(Y), L2P(Y)           |
| Galileo          | E1, E5a, E5b, E6HAS                           |
| GLONASS          | L1OF, L1OC, L2OF, L2OC, L3OC                  |
| QZSS             | L1C/A, L1C, L2C, L5, L62                      |
| NavIC (IRNSS)    | L1, L5, S                                     |
| BeiDou           | B1I, B1C, B2a, B3I                            |
| SBAS             | L1, L5 (EGNOS, WAAS, GAGAN, MSAS, SDCM, SNAS) |
| Specific signals | GPS L1P(Y) & L2P(Y), NavIC L5-RS & S-RS       |

#### Performance

|                           |                                |
|---------------------------|--------------------------------|
| Computation power         | 1 200+ (equiv. L1C/1A signals) |
| RF Channels               | 3 or 6                         |
| Simulation Iteration Rate | 1 000 Hz                       |
| HWIL Input Rate           | up to 10 000 Hz                |
| Relativistic Effects      | ✓                              |
| Pseudorange Rate          | +/- 0.001 m/s                  |
| Pseudorange Accuracy      | +/- 0.001 m                    |

### SIMULATOR

#### Connectivity

|                              |                                                                                        |
|------------------------------|----------------------------------------------------------------------------------------|
| RF Output Connector          | 3xSMA Mono-Band and 1xN Female Multi-Band or 6xSMA Mono-Band and 2xN Female Multi-Band |
| Int. 10 MHz Reference Output | BNC female                                                                             |
| Ext. 10 MHz Reference Input  | BNC female                                                                             |
| External Trigger In/Out      | BNC female, TTL Level, 5V DC, Configurable Timing & Pulse widths                       |
| PPS in, PPS out              | BNC female, 1Hz rate, PPS-In 5 Volts, PPS-out 3.3 Volts, +/- 5 ns from RF output       |
| GUI/Network Connector        | RJ45 (1Gb/s)                                                                           |
| Dedicated HWIL Connector     | RJ45 (1 Gb/s)                                                                          |
| PRN Link                     | RJ45 (10 Gb/s)                                                                         |



### HARDWARE

|                                               |                                                                      |
|-----------------------------------------------|----------------------------------------------------------------------|
| Input Voltage Range                           | 100 to 240 V AC +/-10%                                               |
| Input Frequency Range                         | 50 to 60 Hz                                                          |
| Power Consumption                             | 120 W                                                                |
| Operating Temp. Range                         | 0 °C to +50 °C                                                       |
| Storage Temp. Range                           | -20 °C to +70 °C                                                     |
| Relative Humidity (Operating/Storage/Transit) | 10-93%, @ 40 °C, non condensing                                      |
| Operating altitude                            | 5000 m                                                               |
| Shock (according to EN 60068-2-27)            | Operating: 15 G 11 ms duration<br>Non-operating: 30 G 11 ms duration |

### RF FRONT END

#### RF Output

|                           |                                                                        |
|---------------------------|------------------------------------------------------------------------|
| Frequency Range           | From 1 100 MHz to 1 700 MHz and from 2 450 to 2 550 MHz                |
| RF Bandwidth              | 20 up to 25 MHz                                                        |
| RF Power (@50 Ohm)        | From -55 to -120 dBm<br>0.1 dB resolution<br>+/- 0.1 dB Power Accuracy |
| RF Signal Level (Jamming) | Up to +80 dB J/S with signal (S) reference power at -120 dBm           |

#### Output VSWR

|                |                      |
|----------------|----------------------|
| Supported VSWR | $\infty$ (permanent) |
|----------------|----------------------|

#### RF Quality

|                       |                          |
|-----------------------|--------------------------|
| Harmonic Spurious     | < -65 dBc min            |
| Non-harmonic Spurious | < -55 dBc (SF dependent) |
| RMS Jitter            | 104 fs                   |
| Group Delay Variation | < 15ns @ BW = 55 MHz     |
| Group Delay Stability | < 10ps/°C @ BW = 55 MHz  |
| Phase Noise           | <5.10 <sup>-3</sup>      |

#### Synthesizer - Internal 10 MHz Reference

|                     |                                                              |
|---------------------|--------------------------------------------------------------|
| Signal              | Sinus                                                        |
| Stability           | 5.10 <sup>-9</sup> from +10°C to +40°C                       |
| Aging               | 0.5 ppb/day and 50 ppb/year the first year, then 10 ppb/year |
| Allan Variance (1s) | 2x10 <sup>-12</sup>                                          |
| Noise Floor Level   | < -193 dBW.Hz <sup>-1</sup>                                  |

#### Synthesizer - Internal 10 MHz Reference Output

|           |        |
|-----------|--------|
| Signal    | Sinus  |
| Impedance | 50 Ohm |
| Level     | 6 dBm  |

|              | Standard Dynamics | Extended Dynamics |
|--------------|-------------------|-------------------|
| Altitude     | No Limitation     | No limitation     |
| Acceleration | No limitation     | No limitation     |
| Velocity     | < 600 m/s         | No limitation     |
| Jerk         | No limitation     | No limitation     |

Vibration (according to EN 60068-2-6) Operating: 10-150 Hz: 1G/3 axis  
Non-operating: 10-150 Hz: 2G/3 axis

MTBF > 50.000 hrs

|                                                                                      |    |                                                                                       |    |
|--------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------|----|
|  | 2U |  | 4U |
| 430 x 88 x 510 mm<br>17 x 3.5 x 20 in                                                |    | 430 x 177 x 472 mm<br>17 x 7 x 18.5 in                                                |    |
| 12 kg / 26.5 lb                                                                      |    | 20 kg / 44 lb                                                                         |    |

Each configuration comes with 1 Multi RF output and 3 Mono RF outputs, simulating 80, 240, 600 and 1 200+ L1C/A equivalent signals.

More RF outputs can be added to RTGS4-14 and 24 units, up to 6 Mono RF and 2 Multi RF.

### Base configurations

### HIGH-END R&D

#### PRODUCTION



RTGS4-02

#### VALIDATION



RTGS4-12



RTGS4-14



RTGS4-24

|                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>Standard 2U unit</li> <li><b>80 signals</b></li> <li>Constellator Simulation Software</li> <li>2 Constellations, 2 Bands</li> </ul> | <ul style="list-style-type: none"> <li>Standard 2U unit</li> <li><b>240+ signals</b></li> <li>Constellator Simulation Software</li> <li>(Signals &amp; Bands to be added individually)</li> </ul> | <ul style="list-style-type: none"> <li>Standard 4U unit</li> <li><b>600+ signals</b></li> <li>Constellator Simulation Software</li> <li>(Signals &amp; Bands to be added individually)</li> </ul> | <ul style="list-style-type: none"> <li>Standard 4U unit</li> <li><b>1200+ signals</b></li> <li>Constellator Simulation Software</li> <li>(Signals &amp; Bands to be added individually)</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Constellator's singularity lies in the **Real-time tight coupling of SDR (Software Defined Radio) and state-of-the-art RF Analog front-end**. Top-end processing performance and superior RF quality are met into a COTS solution offering maximum flexibility in simulation control.

### Options

|                                  |                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constellations                   | GPS, Galileo, GLONASS, QZSS, NavIC (IRNSS), BeiDou, SBAS systems                                                                                                                                                                                                                                                                                             |
| Frequency Bands                  | L1, L2, L5, L6, S                                                                                                                                                                                                                                                                                                                                            |
| Specific Signals                 | GPS L1P, GPS L2P, NavIC L5-RS, NavIC S-RS                                                                                                                                                                                                                                                                                                                    |
| RTGS_Trajectory_Replay           | Replay of user-defined trajectory, from file, up to 100 Hz / 10 000 Hz. Specific file format to configure a specific predefined user-defined trajectory. Conversion tool included.                                                                                                                                                                           |
| RTGS_Trajectory_Replay_High_Rate | Live feed of user-defined trajectory and orientation, up to 100 Hz / 10 000 Hz. Allows full control of trajectory, in live, with zero-effective latency.                                                                                                                                                                                                     |
| RTGS_HIL                         | Allows altitude above 100 km. Includes interfaces to specify open loop orbital trajectories (Keplerian parameter or initial position & velocity). Trajectory propagation using 40th order gravitational model, atmospheric drag, lunar & solar gravitational perturbation, solar pressure. Space dedicated 3D extensions of all standard ionospheric models. |
| RTGS_Extended_Dynamics           | Allows receiver trajectories with velocity above 600 m/s (requires Export Licence)                                                                                                                                                                                                                                                                           |
| RTGS_Jamming                     | Up to 20 jammers with up to 10 signals each amongst: CW, Pulsed-CW, Spectrum-matching noise & Band-Limited Additional White Gaussian noise. Up to 80 dB J/S with shared RF Output. Up to 115 dB (resp. 130) with 40 dB C/N0 (resp. 25) on GNSS signal with specific RF Output.                                                                               |
| RTGS_Spoofing                    | Up to 20 Spoofers with configurable source positions, spoofing positions, delay, RF power, list of signals, meaconing.                                                                                                                                                                                                                                       |
| RTGS_Signal_Advanced_File        | Interface to inject low level perturbations to signals (amplitude, delay, drift, phase offset), modelling advanced effects: all sorts of multipath, clock bias, drifts or noise, scintillation, radio occultation, and more.                                                                                                                                 |
| RTGS_Signal_Advanced_Live        | File: Effects are user-defined, and uploaded via a file in a specific format. Live: Effects can be injected in real-time by the user, during a simulation.                                                                                                                                                                                                   |
| RTGS_PRN Link                    | Input card to inject spreading codes for encrypted signals (L1P(Y), L2P(Y), NavIC RS, or other signals on demand).                                                                                                                                                                                                                                           |

# The future of navigation is software

Since 2015, Syntony has become a leader in the GNSS industry. Syntony offers unique location solutions allying Software-Defined Radio (SDR) and state-of-the-art RF Analog front-end.

Easy to setup and use, Syntony solutions are built to evolve with the market needs, and inherit from 20 years of R&D and collaboration with high-demanding industries and administrations.

## For more information

Visit our website:  
[syntony-gnss.com](http://syntony-gnss.com)

Contact us:  
[contact@syntony.fr](mailto:contact@syntony.fr)



Follow us:



## Syntony Offices



TOULOUSE - PARIS - NEW YORK



### Safety Certifications

EN/IEC 61010-1:2010  
ROHS, 2011/65/EU  
NRTL UL 62368-1  
CB IEC 62368-1

### Emissions

EN 61326-1:2013  
FCC Part 15 : 2016 – Verification  
(Section 2.902 47 CFR)